
MATLAB® Production Server™
Python® Client Programming

R2023a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Production Server™ Python® Client Programming
© COPYRIGHT 2012–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
October 2014 Online only New for Version 2.0 (Release R2014b)
March 2015 Online only Revised for Version 2.1 (Release R2015a)
September 2015 Online only Revised for Version 2.2 (Release R2015b)
March 2016 Online only Revised for Version 2.3 (Release 2016a)
September 2016 Online only Revised for Version 2.4 (Release 2016b)
March 2017 Online only Revised for Version 3.0 (Release 2017a)
September 2017 Online only Revised for Version 3.0.1 (Release R2017b)
March 2018 Online only Revised for Version 3.1 (Release R2018a)
September 2018 Online only Revised for Version 4.0 (Release R2018b)
March 2019 Online only Revised for Version 4.1 (Release R2019a)
September 2019 Online only Revised for Version 4.2 (Release R2019b)
March 2020 Online only Revised for Version 4.3 (Release R2020a)
September 2020 Online only Revised for Version 4.4 (Release R2020b)
March 2021 Online only Revised for Version 4.5 (Release R2021a)
September 2021 Online only Revised for Version 4.6 (Release R2021b)
March 2022 Online only Revised for Version 5.0 (Release R2022a)
September 2022 Online only Revised for Version 5.1 (Release R2022b)
March 2023 Online only Revised for Version 5.2 (Release R2023a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Client Programming
1

Create a MATLAB Production Server Python Client 1-2

Create a Python Client . 1-3

Python Client Development
2

Install the MATLAB Production Server Python Client 2-2
Supported Python Interpreters . 2-2
Installation Procedure . 2-2

Create Client Connection . 2-3
Create Default Connection . 2-3
Configure Connection Timeout . 2-3
Use HTTPS for Client-Server Communication . 2-4

Invoke Packaged MATLAB Functions . 2-5
Invoke MATLAB Functions that Return Multiple Outputs 2-5
Invoke MATLAB Functions that Return Zero Outputs 2-6
Invoke MATLAB Functions that Return Single Output 2-6

Handle Function Processing Errors . 2-7
HTTP Errors . 2-7
MATLAB Runtime Errors . 2-8

Data Handling
3

Pass Data Between MATLAB Production Server and Python 3-2
Pass Data from MATLAB Production Server to Python 3-2
Pass Data from Python to MATLAB Production Server 3-3

matlab Python Module . 3-4
MATLAB Classes in the matlab Python Module . 3-4
Properties and Methods of MATLAB Classes in the matlab Python Package

. 3-6
Create a MATLAB Array with N Elements . 3-8
Multidimensional MATLAB Arrays in Python . 3-8

iii

Contents

Index Into MATLAB Arrays in Python . 3-8
Slice MATLAB Arrays in Python . 3-9
Reshaping MATLAB Arrays in Python . 3-9
Use Custom Types to Initialize MATLAB Arrays 3-10

Use MATLAB Arrays in Python . 3-11

APIs
4

iv Contents

Client Programming

• “Create a MATLAB Production Server Python Client” on page 1-2
• “Create a Python Client” on page 1-3

1

Create a MATLAB Production Server Python Client
You can call a MATLAB function deployed to MATLAB Production Server from a Python client
application. To create a Python client:

1 Install the MATLAB Production Server client runtime files.

For details, see “Install the MATLAB Production Server Python Client” on page 2-2.
2 In consultation with the MATLAB programmer, collect the MATLAB function signatures that

comprise the services in the application.
3 Write Python code to instantiate a connection to a MATLAB Production Server instance.

For different ways to create a connection, see “Create Client Connection” on page 2-3.
4 Create the required MATLAB data for function inputs and outputs.

For using arrays as function arguments, see “matlab Python Module” on page 3-4. For other
data types, see “Pass Data Between MATLAB Production Server and Python” on page 3-2.

5 Evaluate the MATLAB functions.

For more information about ways to call deployed MATLAB functions, see “Invoke Packaged
MATLAB Functions” on page 2-5.

6 Close the client connection.

See Also
matlab.production_server.client.MWHttpClient

Related Examples
• “Create a Python Client”
• “Create Deployable Archive for MATLAB Production Server”

1 Client Programming

1-2

Create a Python Client
This example shows how to write a MATLAB Production Server client using the Python client API. The
client application calls the addmatrix MATLAB function deployed to a server instance. For
information on writing and compiling the function for deployment, see “Create Deployable Archive for
MATLAB Production Server”. For deploying the function to the server, see “Deploy Archive to
MATLAB Production Server”.

Before you write the client application, you must have the MATLAB Production Server Python client
libraries installed on your system. For details, see “Install the MATLAB Production Server Python
Client” on page 2-2.

1 Start the Python command line interpreter.
2 Enter the following import statements at the Python command prompt.

import matlab
from production_server import client

3 Open the connection to the MATLAB Production Server instance and initialize the client runtime.

client_obj = client.MWHttpClient("http://localhost:9910")
4 Create the MATLAB data to input to the function.

a1 = matlab.double([[1,2,3],[3,2,1]])
a2 = matlab.double([[4,5,6],[6,5,4]])

5 Call the deployed MATLAB function. To call the function, you must know the name of the
deployed archive and the name of the function.

The syntax for invoking a function is client.archiveName.functionName(arg1,
arg2, .., [nargout=numOutArgs]).

client_obj.addmatrix.addmatrix(a1,a2)

The output is:

matlab.double([[5.0,7.0,9.0],[9.0,7.0,5.0]])
6 Close the client connection.

client_obj.close()

See Also
matlab.production_server.client.MWHttpClient

Related Examples
• “Create Client Connection” on page 2-3
• “Invoke Packaged MATLAB Functions” on page 2-5

 Create a Python Client

1-3

Python Client Development

• “Install the MATLAB Production Server Python Client” on page 2-2
• “Create Client Connection” on page 2-3
• “Invoke Packaged MATLAB Functions” on page 2-5
• “Handle Function Processing Errors” on page 2-7

2

Install the MATLAB Production Server Python Client
In this section...
“Supported Python Interpreters” on page 2-2
“Installation Procedure” on page 2-2

The MATLAB Production Server client APIs are available for download at MATLAB Production Server
Client Libraries. In an on-premises MATLAB Production Server installation, the client APIs are
located in MPS_INSTALL/client, where $MPS_INSTALL is the MATLAB Production Server
installation location.

Supported Python Interpreters
For information about versions of Python that the MATLAB Production Server Python client supports,
see Product Requirements & Platform Availability for MATLAB Production Server.

Installation Procedure
The MATLAB Production Server Python client provides a standard Python setup script. This script
installs the required modules into your Python environment.

1 Navigate to the Python client API folder.

Example 2.1. UNIX

cd MPS_INSTALL/client/python

Example 2.2. Windows

cd MPS_INSTALL\client\python
2 Run the setup script. You require write and execute permissions in the directory where you run

the script.

python setup.py install

See Also

More About
• “Create a Python Client” on page 1-3
• “Create a MATLAB Production Server Python Client” on page 1-2

2 Python Client Development

2-2

https://www.mathworks.com/products/matlab-production-server/client-libraries.html
https://www.mathworks.com/products/matlab-production-server/client-libraries.html
https://www.mathworks.com/support/requirements/matlab-production-server.html

Create Client Connection
In this section...
“Create Default Connection” on page 2-3
“Configure Connection Timeout” on page 2-3
“Use HTTPS for Client-Server Communication” on page 2-4

The connection between a Python client and a MATLAB Production Server instance is encapsulated in
a matlab.production_server.client.MWHttpClient object. You use the MWHttpClient
constructor to instantiate the connection between the client and the server.

The MWHttpClient() constructor has the following signature:

client.MWHttpClient(url[,timeout_ms=timeout,ssl_context=ssl_context])

The constructor has the following arguments:

• url — URL of the server instance to which the client connects. If the URL is to an on-premises
server instance, the URL must contain the port number of the server instance.

Note The URL contains only the host name and port information of the server instance.
• timeout_ms — Amount of time, in milliseconds, that the client waits for a response before timing

out.

The default time-out interval is two minutes.
• ssl_context — ssl.SSLContext object that contains information about the SSL protocol to

use for HTTPS communication with the server. If the URL of the server instance contains HTTPS,
this argument is required.

The default is to not use SSL.

Note The MWHttpClient object is not thread-safe. If you are developing a multithreaded
application, create a new MWHttpClient object for each thread.

Create Default Connection
To create a default connection, provide a value for the server instance URL. The timeout_ms
argument has a default value, so you do not need to specify a time. The default is to use HTTP for
client-server communication. This code sample shows how to connect to server instance on a host
named mps_host using the default time-out of two minutes.

import matlab
from production_server import client

my_client = client.MWHttpClient("http://mps_host:9910")

Configure Connection Timeout
You specify the connection time out by providing a value for the timeout_ms argument. This code
sample specifies a time-out of one minute.

 Create Client Connection

2-3

https://docs.python.org/3/library/ssl.html#ssl.SSLContext

import matlab
from production_server import client

my_client = client.MWHttpClient("http://mps_host:9910",timeout_ms=60000)

Use HTTPS for Client-Server Communication
The MATLAB Production Server Python client API uses the Python ssl library for supporting HTTPS
communication with the server. You specify SSL connection properties by providing an object of the
Python ssl.SSLContext class as value for the ssl_context argument. You can pass a parameter
to the ssl.SSLContext object to set the SSL protocol to use. For more information about the SSL
protocols that the server supports, see ssl-protocols.

HTTPS communication using the Python client API is supported only on Windows® and Linux®

platforms. Mac OS is not supported.

This code sample sets the SSL protocol to PROTOCOL_TLS_CLIENT. Setting the protocol to
PROTOCOL_TLS_CLIENT requires you to provide details about the SSL certificate of the server.

import ssl
import matlab
from production_server import client

context = ssl.SSLContext(ssl.PROTOCOL_TLS_CLIENT)
context.load_verify_locations(cafile='<path_to_server_SSL_certificate_location>\cert_file.pem')
my_client = client.MWHttpClient("https://mps_host:9920",ssl_context=context)

See Also
matlab.production_server.client.MWHttpClient

Related Examples
• “Create a Python Client”
• “Invoke Packaged MATLAB Functions” on page 2-5
• “Handle Function Processing Errors” on page 2-7

External Websites
• class ssl.SSLContext
• Python ssl library

2 Python Client Development

2-4

https://docs.python.org/3/library/ssl.html#module-ssl
https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/ssl.html#module-ssl

Invoke Packaged MATLAB Functions
In this section...
“Invoke MATLAB Functions that Return Multiple Outputs” on page 2-5
“Invoke MATLAB Functions that Return Zero Outputs” on page 2-6
“Invoke MATLAB Functions that Return Single Output” on page 2-6

The connection between a Python client and a MATLAB Production Server instance is encapsulated in
a matlab.production_server.client.MWHttpClient object. You invoke deployed MATLAB
functions using the client connection object.

result1,...resultN = my_client.archive_name.function_name(in_args,
 nargout=nargs)

• my_client — Name of client connection object
• archive_name — Name of the deployable archive hosting the function
• function_name — Name of the function to invoke
• in_args — Comma-separated list of input arguments
• nargs — Number of results expected from the server. The default value is 1.

Note If the function to invoke returns an output, each variable on the left side of the function call is
populated with a single return value. If you provide less than nargs variables on the left side of the
function call, the last listed variable contains a list of the remaining results. For example,

result1, result2 = myMagic.triple(5,nargout=3)

leaves result1 containing a single value and result2 containing a list with two values.

Invoke MATLAB Functions that Return Multiple Outputs
Receive Multiple Results as Individual Variables

To invoke the MATLAB function c1,c2 = copy(o1,o2) from the deployable archive copier, use
this code:

>>> import matlab
>>> from production_server import client
>>> my_client = client.MWHttpClient("http://localhost:9910")
>>> c1,c2 = my_client.copier.copy("blue",10,nargout=2)
>>> print(c1)
"blue"
>>> print(c2)
10

The variables c1 and c2 are populated with a single return value.

Receive Multiple Results as Single Object

To invoke the MATLAB function copies = copy(o1,o2) from the deployable archive copier, use
this code:

 Invoke Packaged MATLAB Functions

2-5

>>> import matlab
>>> from production_server import client
>>> my_client = client.MWHttpClient("http://localhost:9910")
>>> copies = my_client.copier.copy("blue",10,nargout=2)
>>> print(copies)
["blue",10]

The variable copies is populated with a list containing all of the returned values.

Invoke MATLAB Functions that Return Zero Outputs
To invoke the MATLAB function mutate(m1, m2, m3) from the deployable archive mutations, you
use this code:

import matlab
from production_server import client

my_client = client.MWHttpClient("http://localhost:9910")

m1 = matlab.double(...)
m2 = matlab.double(...)
m3 = matlab.double(...)

my_client.mutations.mutate(m1,m2,m3)

Invoke MATLAB Functions that Return Single Output
To invoke the MATLAB function result = mutate(m1, m2, m3) from the deployable archive
mutations, you use this code:

import matlab
from production_server import client

my_client = client.MWHttpClient("http://localhost:9910")

m1 = matlab.double(...)
m2 = matlab.double(...)
m3 = matlab.double(...)

result = my_client.mutations.mutate(m1,m2,m3)

See Also
matlab.production_server.client.MWHttpClient

Related Examples
• “Create a Python Client”
• “matlab Python Module” on page 3-4

2 Python Client Development

2-6

Handle Function Processing Errors
In this section...
“HTTP Errors” on page 2-7
“MATLAB Runtime Errors” on page 2-8

The common types of exceptions that can occur when evaluating MATLAB functions include:

• HTTP errors — Handled using the Python httplib.HTTPException exception. Common reasons
for HTTP errors include:

• Using an incorrect archive name
• Using an incorrect function name
• Timing out before the function finishes evaluating

• MATLAB Runtime errors — Handled using the matlab.mpsexception.MATLABException
exception. Occurs when the MATLAB Runtime generates an error while evaluating a function.

Your client code should handle these errors gracefully.

HTTP Errors
If your client code experiences any issues when sending data to or receiving data from a server
instance, an httplib.HTTPException exception is raised. A common cause for an HTTP error is a
name mismatch between deployed artifacts on the server and the functions called in the client.

For example, deploying the function mutate() in the archive mutations the following results in an
error because the server instance would not be able to resolve the name of the archive.

import httplib
import matlab
from production_server import client

def main()
 my_client = client.MWHttpClient("http://localhost:9190")

 try:
 result = my_client.mutation.mutate("blue",10,12)
 ...
 except httplib.HTTPException as e:
 print e

If you deploy the function mutate() in the archive mutations, the following results in an error
because the server instance would not be able to resolve the name of the function.

import httplib
import matlab
from production_server import client

def main()
 my_client = client.MWHttpClient("http://localhost:9190")

 try:
 result = my_client.mutations.mutator("blue",10,12)

 Handle Function Processing Errors

2-7

 ...
 except httplib.HTTPException as e:
 print e

MATLAB Runtime Errors
If an error occurs while the MATLAB Runtime is evaluating a function, a
matlab.mpsexception.MATLABException exception is raised. The exception contains the
following:

• ml_error_message — Error message returned by the MATLAB Runtime
• ml_error_identifier — MATLAB error ID
• ml_error_stack — MATLAB Runtime stack

This function catches any MATLAB Runtime errors and prints them to the console.

from matlab.production_server import client
from matlab.production_server import mpsexceptions
import sys

def main(size):

 my_client = client.MWHttpClient('http://localhost:9190')
 try:
 data = my_client.magic.mymagic(size)
 print data
 except mpsexceptions.MATLABException as e:
 print 'MATLAB Error: ',e

 my_client.close()

See Also
matlab.production_server.client.MWHttpClient

Related Examples
• “Create a Python Client”
• “Create Client Connection” on page 2-3

2 Python Client Development

2-8

Data Handling

• “Pass Data Between MATLAB Production Server and Python” on page 3-2
• “matlab Python Module” on page 3-4
• “Use MATLAB Arrays in Python” on page 3-11

3

Pass Data Between MATLAB Production Server and Python

In this section...
“Pass Data from MATLAB Production Server to Python” on page 3-2
“Pass Data from Python to MATLAB Production Server” on page 3-3

Pass Data from MATLAB Production Server to Python
When MATLAB functions return output arguments, MATLAB Production Server converts the data into
equivalent Python data types.

MATLAB Output Argument Type
(scalar unless otherwise noted)

Resulting Python Data Type

Numeric array matlab numeric array object (see “matlab
Python Module” on page 3-4)

double, single float
Complex (any numeric type) complex
int8, uint8, int16, uint16, int32 int
uint32, int64, uint64 int
NaN float ('nan')
Inf float ('inf')
logical bool
char array (1-by-N, N-by-1)
char array (M-by-N)

str
Not supported

structure dict
Row or column cell array list
M-by-N cell array Not supported
MATLAB handle object (such as the
containers.Map type)

matlab.object

MATLAB returns a reference to a
matlab.object, not the object itself. You cannot
pass a matlab.object between MATLAB
sessions.

MATLAB value object (such as the categorical
type)

Opaque object. You can pass a value object to a
MATLAB function, but you cannot create or
modify it.

Other object (for example, Java® object) Not supported
Function handle Not supported
Sparse array Not supported
String array Not supported
Structure array Not supported

3 Data Handling

3-2

Pass Data from Python to MATLAB Production Server
When you pass data as input arguments to MATLAB functions from Python, MATLAB Production
Server converts the data into equivalent MATLAB data types.

Python Input Argument Type Resulting MATLAB Data Type
(scalar unless otherwise noted)

matlab numeric array object (see “matlab
Python Module” on page 3-4)

Numeric array

float double
complex Complex double
int int32(Windows)

int64(Linux and Mac)
float('nan') NaN
float('inf') Inf
bool logical
str char
bytearray uint8 array
bytes uint8 array
dict Structure if all keys are strings. Not supported

otherwise
list Cell array
set Cell array
tuple Cell array
memoryview Not supported
range Cell array
None Not supported
module.type Not supported

See Also

Related Examples
• “Use MATLAB Arrays in Python” on page 3-11
• “matlab Python Module” on page 3-4
• “Invoke Packaged MATLAB Functions” on page 2-5

 Pass Data Between MATLAB Production Server and Python

3-3

matlab Python Module
In this section...
“MATLAB Classes in the matlab Python Module” on page 3-4
“Properties and Methods of MATLAB Classes in the matlab Python Package” on page 3-6
“Create a MATLAB Array with N Elements” on page 3-8
“Multidimensional MATLAB Arrays in Python” on page 3-8
“Index Into MATLAB Arrays in Python” on page 3-8
“Slice MATLAB Arrays in Python” on page 3-9
“Reshaping MATLAB Arrays in Python” on page 3-9
“Use Custom Types to Initialize MATLAB Arrays” on page 3-10

The matlab Python module provides array classes to represent arrays of MATLAB numeric types as
Python variables so that MATLAB arrays can be passed between Python and MATLAB.

MATLAB Classes in the matlab Python Module
• You can use MATLAB numeric arrays in Python code by importing the matlab Python package

and calling the necessary constructors. For example:

import matlab
a = matlab.double([[1, 2, 3],[4, 5, 6]])

The name of the constructor indicates the MATLAB numeric type. You can pass MATLAB arrays as
input arguments to MATLAB functions called from Python. When a MATLAB function returns a
numeric array as an output argument, the array is returned to Python.

• You can initialize an array with an optional initializer input argument that contains numbers.
The initializer argument must be a Python sequence type such as a list, tuple, or range.
You can specify initializer to contain multiple sequences of numbers.

• You can initialize an array with an optional vector input argument that contains input of size 1-
by-N. If you use vector, you cannot use initializer.

• You can create a multidimensional array using one of the following options:

• Specify a nested sequence without specifying the size.
• Specify a nested sequence and also specify a size input argument that matches the

dimensions of the nested sequence.
• Specify a one-dimensional sequence together with a multidimensional size. In this case, the

sequence will be assumed to represent the elements in column-major order.
• You can create a MATLAB array of complex numbers by setting the optional is_complex keyword

argument to True.
• You can use custom types for initializing MATLAB arrays in Python. The custom type should

implement the Python buffer protocol. One example is ndarray in NumPy.

3 Data Handling

3-4

Class from matlab Python Package Constructor Call in Python Examples
matlab.double matlab.double(initializer=None|vector=None,

size=None,
is_complex=False)

>>> a = matlab.double(4)

>>> b = matlab.double(vector=[11, 22, 33])

>>> c = matlab.double([[10, 20],[30,40]])

>>> d = matlab.double(initializer=[[10, 20],[30,40]], size=[2,2],is_complex=False)

>>> e = matlab.double(vector=range(0, 20))

>>> f = matlab.double(vector=[x*x for x in range(0, 10, 2)])

>>> g = matlab.double([[1.1+2.4j, 3+4j],[5.3,6.7]], is_complex=True)

matlab.single matlab.single(initializer=None|vector=None,
size=None,
is_complex=False)

>>> a = matlab.single([[1.1, 2.2, 3.3],[4.4, 5.5, 6.6]])

>>> a = matlab.single(vector=[11, 22, 33], is_complex=False)

matlab.int8 matlab.int8(initializer=None|vector=None,
size=None,
is_complex=False)

>>> a = matlab.int8([[11, 22, 33],[44, 55, 66]])

>>> a = matlab.int8(vector=[11, 22, 33], is_complex=False)

matlab.int16 matlab.int16(initializer=None|vector=None,
size=None,
is_complex=False)

>>> e = matlab.int16([[1+2j, 3+4j],[-5,6]], is_complex=True)

matlab.int32 matlab.int32(initializer=None|vector=None,
size=None,
is_complex=False)

>>> a = matlab.int32(initializer=[[11, 22, 33],[44, -55, 66]], size=[2,3], is_complex=False)

matlab.int64 matlab.int64(initializer=None|vector=None,
size=None,
is_complex=False)

>>> a = matlab.int64([[11, 22, 33],[44, -55, 66]])

matlab.uint8 matlab.uint8(initializer=None|vector=None,
size=None,
is_complex=False)

>>> a = matlab.uint8([[11, 22, 33],[44, 55, 66]])

>>> b = matlab.uint8(vector=[11, 22, 33], is_complex=False)

matlab.uint16 matlab.uint16(initializer=None|vector=None,
size=None,
is_complex=False)

>>> a = matlab.uint16(initializer=[[11, 22, 33],[44, 55, 66]], size=[2,3], is_complex=False)

>>> b = matlab.uint16(vector=[11, 22, 33], is_complex=False)

>>> c = matlab.uint16([[11, 22, 33],[44, 55, 66]])

matlab.uint32 matlab.uint32(initializer=None|vector=None,
size=None,
is_complex=False)

>>> a = matlab.uint32(vector=[11, 22, 33], is_complex=False)

>>> b = matlab.uint32([[11, 22, 33],[44, 55, 66]])

matlab.uint64 matlab.uint64(initializer=None|vector=None,
size=None,
is_complex=False)

>>> a = matlab.uint64([[11, 22, 33],[44, 55, 66]])

>>> b = matlab.uint64(vector=[11, 22, 33], is_complex=False)

matlab.logical matlab.logical(initializer=None|vector=None,
size=None)a

>>> a = matlab.logical(initializer=[[True, False, True],[True, True, True]], size=[2,3])

>>> b = matlab.logical([[True, False, True],[True, True, True]])

>>> c = matlab.logical(vector=[True, False, True])

>>> d = matlab.logical([True, False, True])
a Logicals cannot be made into an array of complex numbers.

 matlab Python Module

3-5

Properties and Methods of MATLAB Classes in the matlab Python
Package
All MATLAB arrays created with matlab package constructors have the following properties and
methods:

Properties

Property
Name

Description Examples

size A tuple of integers
representing the
dimensions of an array

>>> a = matlab.int16([[1, 2, 3],[4, 5, 6]])
>>> a.size
(2, 3)

itemsize An integer representing
the size in bytes of an
element of the array

>>> a = matlab.int16()
>>> a.itemsize
2
>>> b = matlab.int32()
>>> b.itemsize
4

3 Data Handling

3-6

Methods

Method Name Purpose Examples
clone() Return a new

distinct object
with contents
identical to the
contents of the
original object

>>> a = matlab.int16(
[[1, 2, 3],[4, 5, 6]])
>>> b = a.clone()
>>> print(b)
[[1,2,3],[4,5,6]]
>>> b[0][0] = 100
>>> b matlab.int16(
[[100,2,3],[4,5,6]])
>>> print(a)
[[1,2,3],[4,5,6]]

real() Return the real
parts of elements
that are complex
numbers, in
column-major
order, as a 1-by-
N array

>>> a = matlab.int16([[1 + 10j,
2 + 20j, 3 + 30j],[4, 5, 6]],
is_complex=True)
>>> print(a.real())
[1,4,2,5,3,6]

imag() Return the
imaginary parts
of elements that
are complex
numbers, in
column-major
order, as a 1-by-
N array

>>> a = matlab.int16([[1 + 10j,
2 + 20j, 3 + 30j],[4, 5, 6]],
is_complex=True)
>>> print(a.imag())
[10,0,20,0,30,0]

noncomplex() Return elements
that are not
complex
numbers, in
column-major
order, as a 1-by-
N array

>>> a = matlab.int16(
[[1, 2, 3],[4, 5, 6]])
>>> print(a.noncomplex())
[1,4,2,5,3,6]

• reshape(dim1
,dim2,...,di
mN)

• reshape((dim
1,dim2,...,d
imN))

• reshape([dim
1,dim2,...,d
imN])

Reshape the
array according
to the
dimensions and
return the result

>>> a = matlab.int16(
[[1, 2, 3],[4, 5, 6]])
>>> print(a)
[[1,2,3],[4,5,6]]
>>> a.reshape(3, 2)
>>> print(a)
[[1,5],[4,3],[2,6]]

 matlab Python Module

3-7

Method Name Purpose Examples
toarray() Return a

standard Python
array.array
object
constructed from
the contents.
Applicable for
one-dimensional
sequences only.

>>> a = matlab.int16(
[[1, 2, 3],[4, 5, 6]])
>>> a[0].toarray()
array('h', [1, 2, 3])
>>> b = matlab.int16(
[[1 + 10j, 2 + 20j,
3 + 30j],[4, 5, 6]],
is_complex=True)
>>> b.real().toarray()
array('h', [1, 4, 2, 5, 3, 6])

tomemoryview() Return a
standard Python
memoryview
object
constructed from
the contents

>>> a = matlab.int16(
[[1, 2, 3],[4, 5, 6]])
>>> b = a.tomemoryview()
>>> b.tolist()
[[1, 2, 3], [4, 5, 6]]
>>> b.shape
(2, 3)

Create a MATLAB Array with N Elements
When you create an array with N elements, the size is 1-by-N because it is a MATLAB array.

import matlab
A = matlab.int8([1,2,3,4,5])
print(A.size)

(1, 5)

The initializer is a Python list containing five numbers. The MATLAB array size is 1-by-5, indicated by
the tuple (1,5).

Multidimensional MATLAB Arrays in Python
In Python, you can create multidimensional MATLAB arrays of any numeric type. Use a nested Python
list of floats to create a 2-by-5 MATLAB array of doubles.

import matlab
A = matlab.double([[1,2,3,4,5], [6,7,8,9,10]])
print(A)

[[1.0,2.0,3.0,4.0,5.0],[6.0,7.0,8.0,9.0,10.0]]

The size attribute of A shows it is a 2-by-5 array.

print(A.size)

(2, 5)

Index Into MATLAB Arrays in Python
You can index into MATLAB arrays just as you can index into Python lists and tuples.

import matlab
A = matlab.int8([1,2,3,4,5])

3 Data Handling

3-8

print(A[0])

[1,2,3,4,5]

The size of the MATLAB array is (1,5); therefore, A[0] is [1,2,3,4,5]. Index into the array to get
3.

print(A[0][2])

3

Python indexing is zero-based. When you access elements of MATLAB arrays in a Python session, use
zero-based indexing.

This example shows how to index into a multidimensional MATLAB array.

A = matlab.double([[1,2,3,4,5], [6,7,8,9,10]])
print(A[1][2])

8.0

Slice MATLAB Arrays in Python
You can slice MATLAB arrays just as you can slice Python lists and tuples.

import matlab
A = matlab.int8([[1,2,3,4,5]])
print(A[0][1:4])

[2,3,4]

You can assign data to a slice. This example shows an assignment from a Python list to the array.

A = matlab.double([[1,2,3,4],[5,6,7,8]])
A[0] = [10,20,30,40]
print(A)

[[10.0,20.0,30.0,40.0],[5.0,6.0,7.0,8.0]]

You can assign data from another MATLAB array, or from any Python iterable that contains numbers.

You can specify slices for assignment, as shown in this example.

A = matlab.int8([1,2,3,4,5,6,7,8])
A[0][2:4] = [30,40]
A[0][6:8] = [70,80]
print(A)

[[1,2,30,40,5,6,70,80]]

Reshaping MATLAB Arrays in Python
You can reshape a MATLAB array in Python with the reshape method. The input argument, size,
must be a sequence that does not change the number of elements in the array. Use reshape to
change a 1-by-9 MATLAB array to 3-by-3. Elements are taken from the original array in column-major
order.

 matlab Python Module

3-9

import matlab
A = matlab.int8([1,2,3,4,5,6,7,8,9])
A.reshape((3,3))
print(A)

[[1,4,7],[2,5,8],[3,6,9]]

Use Custom Types to Initialize MATLAB Arrays
You can use custom types such as the ndarray in NumPy for initializing MATLAB arrays in Python.
The custom type should implement the Python buffer protocol.

import matlab
import numpy

nf = numpy.array([[1.1, 2,2, 3.3], [4.4, 5.5, 6.6]])
md = matlab.double(nf)
ni32 = numpy.array([[1, 2, 3], [4, 5, 6]], dtype='int32')
mi32 = matlab.int32(ni32)

See Also

Related Examples
• “Use MATLAB Arrays in Python” on page 3-11
• “Pass Data to MATLAB from Python” (MATLAB)

3 Data Handling

3-10

Use MATLAB Arrays in Python
This example shows how to use MATLAB arrays in Python.

The matlab package provides new Python data types to create arrays that can be passed to MATLAB
functions. The matlab package can create arrays of any MATLAB numeric or logical type from
Python sequence types. Multidimensional MATLAB arrays are supported.

Create a MATLAB array in Python, and call a MATLAB function on it.

import matlab
from production_server import client
client_obj = client.MWHttpClient("http://localhost:9910")
x = matlab.double([1,4,9,16,25])
print(client_obj.myArchive.sqrt(x))

[[1.0,2.0,3.0,4.0,5.0]]

You can use matlab.double to create an array of doubles given a Python list that contains numbers.
You can call a MATLAB function such as sqrt on x, and the return value is another matlab.double
array.

Create a multidimensional array. The magic function returns a 2-D array to Python scope.

a = client_obj.myArchive.magic(6)
print(a)

[[35.0,1.0,6.0,26.0,19.0,24.0],[3.0,32.0,7.0,21.0,23.0,25.0],
 [31.0,9.0,2.0,22.0,27.0,20.0],[8.0,28.0,33.0,17.0,10.0,15.0],
 [30.0,5.0,34.0,12.0,14.0,16.0],[4.0,36.0,29.0,13.0,18.0,11.0]]

Call the tril function to get the lower triangular portion of a.

b = client_obj.myArchive.tril(a)
print(b)

[[35.0,0.0,0.0,0.0,0.0,0.0],[3.0,32.0,0.0,0.0,0.0,0.0],
 [31.0,9.0,2.0,0.0,0.0,0.0],[8.0,28.0,33.0,17.0,0.0,0.0],
 [30.0,5.0,34.0,12.0,14.0,0.0],[4.0,36.0,29.0,13.0,18.0,11.0]]

See Also

More About
• “matlab Python Module” on page 3-4

 Use MATLAB Arrays in Python

3-11

APIs

4

matlab.production_server.client.MWHttpClient
Package: matlab.production_server

Python object encapsulating a connection to a MATLAB Production Server instance

Description
The matlab.production_server.client.MWHttpClient class creates a connection object that
encapsulates the connection between the client and a MATLAB Production Server instance. Once the
connection is created, you can dynamically call all MATLAB functions hosted on the server instance.

Construction
my_client = MWHttpClient(url,[timeout_ms=timeout_ms],[ssl_context=
ssl_context])

Input Arguments

url — URL of the server instance to connect to
string

URL of the server instance to which the client connects, specified as a string. This server instance
hosts the MATLAB functions which the client can evaluate.

timeout_ms — number of milliseconds the client waits for a response from the server
instance
120000 (default)

Number of milliseconds the client waits for a response from the server instance, specified as an
integer.

ssl_context — SSLContext object that specifies the SSL protocol to use for client-server
communication
None (default) | ssl.SSLContext object

SSL protocol to use for client-server communication, specified as an ssl.SSLContext object. The
Python client library uses the Python ssl library library for supporting HTTPS requests to server
instances. For information about the SSL protocols that the server supports, see ssl-protocols.

This argument is required if the URL to connect to the server instance uses HTTPS.

HTTPS communication using the Python client API is supported only on Windows and Linux
platforms. Mac OS is not supported.

4 APIs

4-2

https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/ssl.html#module-ssl

Methods

Exceptions
HTTPException Raised if there is a problem communicating with

the server instance.
MATLABException Raised if a function call fails to execute.
TypeError Raised if the specified timeout value is not a

positive int or long.
ValueError Raised if the specified timeout value is less than

zero.

Version History
R2022a: Support for Python 2.7 will be discontinued in R2022b
Not recommended starting in R2022a

The MATLAB Production Server Python client library will not support Python 2.7 in future releases. If
you want to use Python 2.7 to develop client applications, you can continue using the R2022a version
of the Python client library in future releases.

For more information on client system requirements, see Product Requirements and Platform
Availability for MATLAB Production Server.

R2022b: Python 2.7 no longer supported in R2022b
Errors starting in R2022b

The MATLAB Production Server Python client library no longer supports Python 2.7. If you want to
use Python 2.7 to develop client applications, you can continue using the R2022a version of the
Python client library in future releases.

For more information on client system requirements, see Product Requirements and Platform
Availability for MATLAB Production Server.

See Also
Topics
“Create Client Connection” on page 2-3
“Invoke Packaged MATLAB Functions” on page 2-5

External Websites
ssl.SSLContext
Python ssl library

 matlab.production_server.client.MWHttpClient

4-3

https://www.mathworks.com/support/requirements/matlab-production-server.html
https://www.mathworks.com/support/requirements/matlab-production-server.html
https://www.mathworks.com/support/requirements/matlab-production-server.html
https://www.mathworks.com/support/requirements/matlab-production-server.html
https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/ssl.html#module-ssl

	Client Programming
	Create a MATLAB Production Server Python Client
	Create a Python Client

	Python Client Development
	Install the MATLAB Production Server Python Client
	Supported Python Interpreters
	Installation Procedure

	Create Client Connection
	Create Default Connection
	Configure Connection Timeout
	Use HTTPS for Client-Server Communication

	Invoke Packaged MATLAB Functions
	Invoke MATLAB Functions that Return Multiple Outputs
	Invoke MATLAB Functions that Return Zero Outputs
	Invoke MATLAB Functions that Return Single Output

	Handle Function Processing Errors
	HTTP Errors
	MATLAB Runtime Errors

	Data Handling
	Pass Data Between MATLAB Production Server and Python
	Pass Data from MATLAB Production Server to Python
	Pass Data from Python to MATLAB Production Server

	matlab Python Module
	MATLAB Classes in the matlab Python Module
	Properties and Methods of MATLAB Classes in the matlab Python Package
	Create a MATLAB Array with N Elements
	Multidimensional MATLAB Arrays in Python
	Index Into MATLAB Arrays in Python
	Slice MATLAB Arrays in Python
	Reshaping MATLAB Arrays in Python
	Use Custom Types to Initialize MATLAB Arrays

	Use MATLAB Arrays in Python

	APIs
	matlab.production_server.client.MWHttpClient

